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Abstract—This paper presents a novel computer-aided diagnosis
(CAD) technique for the early diagnosis of the Alzheimer’s disease
(AD) based on nonnegative matrix factorization (NMF) and sup-
port vector machines (SVM) with bounds of confidence. The CAD
tool is designed for the study and classification of functional brain
images. For this purpose, two different brain image databases are
selected: a single photon emission computed tomography (SPECT)
database and positron emission tomography (PET) images, both of
them containing data for both Alzheimer’s disease (AD) patients
and healthy controls as a reference. These databases are analyzed
by applying the Fisher discriminant ratio (FDR) and nonnegative
matrix factorization (NMF) for feature selection and extraction of
the most relevant features. The resulting NMF-transformed sets
of data, which contain a reduced number of features, are classi-
fied by means of a SVM-based classifier with bounds of confidence
for decision. The proposed NMF-SVM method yields up to 91%
classification accuracy with high sensitivity and specificity rates
(upper than 90%). This NMF-SVM CAD tool becomes an accu-
rate method for SPECT and PET AD image classification.
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I. INTRODUCTION

A LZHEIMER’S disease (AD) is the most common cause of
dementia in aged people and affects more than 30 million

individuals worldwide. The particular evolution of AD patients
and their increasing dependence on the close affective environ-
ment provokes an important social repercussion, as the cognitive
functions of the patient gradually disappear and his individual
essence blurs [1]. The effects of this disease are of great im-
portance not only in terms of familiar dependence and affliction
but also economic: with the growth of the older population in
developed nations, the prevalence of AD is expected to triple
over the next 50 years. Functional imaging modalities are often
used with the aim of achieving early diagnosis, although this
early diagnosis remains as a demanding task, usually based on
the information provided by a careful clinical examination car-
ried out by experts.

Emission computed tomography images have been widely
employed in biomedical research and clinical medicine during
the last decade. These emission-based functional images repro-
duce a map of physiological functions along with anatomical
structure images, providing information about physiological
phenomena and their location in the body. In this work,
two different modalities are used for brain image acquisi-
tion: positron emission tomography (PET) and single photon
emission computed tomography (SPECT). Both techniques
are noninvasive, nuclear medicine imaging techniques which
produce a three-dimensional image of functional processes
in the body, such as blood perfusion or glucose metabolism,
by means of emitting radionuclides (tracers) [2], [3]. In both
techniques, PET and SPECT, all these detected emissions are
processed and a three-dimensional image of the region under
study is obtained, in this case the brain, by means of subsequent
computer analysis and back-projection Fourier algorithms [2].

A. Computer Aided Diagnosis (CAD) Techniques

For the past several decades, researchers in the medical
imaging field have focused on bringing new imaging modalities
to clinicians while improving the performance of existing
systems [4], [5]. Nowadays, signal processing engineers are
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beginning to take the next step by introducing software im-
provements, enabling computers to help clinicians to make
sense of such an amount of noninvasive medical information.
Computer aided diagnosis (CAD) is a general term used for a
variety of techniques applied to whatever kind of medical data,
such as to medical images, to assist physicians in their diag-
nosis work. CAD systems help physicians by either identifying
patterns that might have been overlooked or by providing a road
map of suspicious areas, making their efforts more efficient.

Several approaches for designing CAD systems for the
Alzheimer’s disease diagnosis can be found in the literature
[6]–[9]. The first approach is the statistical parametric mapping
(SPM) [10] tool, widely used in neuroscience, and its numerous
variants. It was not developed specifically to study a single
image, but for comparing groups of images. SPM is designed as
a univariate approach since the classical multivariate techniques
require the number of available observations (i.e., images) to
be greater than the number of components (i.e., voxels) of the
multivariate observation. The second approach is based on
the analysis of the images, the analysis of regions of interest
(ROI), feature extraction and posterior classification in dif-
ferent classes by means of some discriminative functions. This
multivariate approach faces up the well-known small sample
size problem, that is, the number of available samples is much
lower than the number of features used in the training step. In
this case, dimensionality reduction and feature selection is an
issue of great concern. As referred in [11] and [12], statistical
learning classification methods and CAD tools have not been
explored in depth for dementia, quite possibly due to the fact
that images represent large amounts of data and most imaging
studies have relatively few subjects (typically ) [11],
[13], [14].

A supervised learning-based CAD system applied to func-
tional imaging consists of several important stages:

1) functional image acquisition and normalization;
2) feature selection and extraction;
3) classification, with a train and test strategy.

The design and proper validation of a CAD tool for Alzheimer’s
disease diagnosis, along with the adequate description of its
forming techniques for feature selection and extraction and for
posterior classification, is the main issue in this work.

Sections II and III provide the main techniques applied in
the CAD tool provided in this work. The first one is devoted to
the reduction and rearrangement of the data by means of non-
negative matrix factorization (NMF), meanwhile the second is
devoted to the proper definition of a support vector machine
(SVM) based classifier with bounds of confidence. Section IV
provides the Experimental setup of the CAD tool, along with the
input data description. Section V provides the evaluation results
of the CAD tool. Finally, conclusions are drawn in Section VI.

II. FEATURE SELECTION AND REDUCTION

Each voxel of a brain functional 3-D image contains infor-
mation of the corresponding brain point. However, not all the
voxels have the same level of relevance in terms of discrimina-
tion between groups of subjects. In this case, two groups of sub-
jects are defined: Alzheimer’s disease patients, labeled as AD,
and subjects not affected by this disease, labeled as NOR. Thus,

an initial feature selection based on discrimination capability is
typically selected [15]–[17], obtaining a vector of discriminant
voxels for each participant. In addition, the selected discrimi-
nant voxel vectors can be projected onto a different subspace.
This subspace is chosen so that only a few variables represent
the most discriminant features of each patient images in each
database. These steps are conveniently described below.

A. Intensity Normalization

Previous to any kind of feature selection, the data sets have
to be normalized in intensity in order to be able to compare im-
ages according to their voxel normalized intensity levels. Re-
garding the intensity normalization, the normalization to the
maximum intensity level may introduce problems in some im-
ages that can have peak intensity values due to noise. Thus, these
images are badly normalized as the normalization is based on
wrong noisy voxels. In this work, in order to avoid these pos-
sible normalization errors, it is applied intensity normalization
based on the mean value of a group of voxels with the highest
intensity values. According to [18], the mean value of the 0.1%
voxels with the highest intensity levels is selected for the inten-
sity normalization.

B. Fisher Discriminant Ratio for Feature Selection

The Fisher discriminant ratio (FDR) criterion is characterized
by its separation ability as shown in [19]. For the two-class case,
it may be defined as follows:

(1)

where and denote the th class mean value and variance
for each input variable, respectively. For a given variable, the
ratio value grows as the difference of the mean values of each
two classes increases or the cumulative scattering in each class
decreases, thus being useful to reveal discriminant variables. In
the case of the functional images, the voxels that satisfy a partic-
ular FDR threshold level are selected as the most discriminative
variables [11], [17], [20]. In addition, the selection of voxels
that pass the FDR threshold lets reduce the dimensionality of
the problem, which means a lower number of variables in each
observation.

C. Nonnegative Matrix Factorization for Feature Reduction

Nonnegative matrix factorization (NMF) is a technique for
finding parts-based, linear representations of nonnegative data
[21], [22], being a useful decomposition tool for multivariate
data. This technique is especially suitable for nonnegative data
sets such as functional images in general, and for the PET and
SPECT brain images of this work in particular, where all the
variables consist of positive values. Given a nonnegative data
matrix , NMF finds an approximate factorization
into nonnegative matrices and . The nonnegativity condi-
tion forces the representation to be purely additive, in contrast
to other existing representations such as principal component
analysis (PCA) [23], kernel PCA [24], etc. PCA or NMF can all
be seen as matrix factorization, with different choices of objec-
tive function and/or constraints [25].
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NMF has been widely applied in the field of image pro-
cessing. In the literature, it can be found a variety of works
based on NMF, for image processing in general (i.e., face
recognition [26], [27]) and in medical image processing and
analysis in particular: brain image analysis [28], dynamic
myocardial image analysis [29], etc. Many works are available
related to NMF image transformation for image analysis [27],
[30], NMF algorithms [21], [31], kernel techniques applied to
NMF [31], [32], etc.

Formally, nonnegative matrix factorization is a linear, non-
negative approximate data representation where the original
database ( by elements), which
consists of measurements (profiles) of nonnegative scalar
variables, is approximated by a nonnegative matrix product, as
given in

(2)

where the matrix has dimension
, and the matrix has dimension

. Thus, each element of matrix is decomposed, as
shown in

(3)

An appropriate decision on the value of is critical in
practice, but the choice of is very often problem depen-
dent. In most cases, however, is usually chosen such that

in which case can be seen as a
compressed form of the data in [33]. This property yields
a reduced-variable matrix that represents in terms of the
NMF basis . After NMF factorization, the data contained in

( by elements) can be considered a transformed data-
base with lower rank , than the original database . Thus,
a few variables are representing the data of each profile in the
new representation. The relative error (%) of the factorization
can be computed by means of the comparison of matrix
and the approximation . The minimum number of vectors

in the NMF basis is selected so that a predefined level of
relative error is not exceeded.

1) Factorization Rule: Given the data matrix , the optimal
choice of matrices and are defined to be those nonnegative
matrices that minimize the reconstruction error between and

. A variety of error functions have been proposed
[21], [22], some of the most useful are given below, in (4) and
(5), and applied in this work [21]

(4)

(5)

where (4) is known as the Frobenius norm (reduction of the Eu-
clidean distance), and (5) as the Kullback–Leibler divergence,

Fig. 1. NMF projection for the same transaxial slice of all the SPECT database
subjects. (a) NMF eigenvectors for � � �, 2, 3. (b) One example subject slice.
(c) Its NMF reconstruction. Note the special relevance of some brain regions in
the eigenvectors.

among others. The NMF process is, thus, translated into an op-
timization problem, subject to minimization of , according
to the one chosen.

Some NMF algorithms are proposed in [33]. There are dif-
ferent approaches for these algorithms [21]: with multiplicative
update rule, with additive update rule or alternating least squares
algorithms (ALS). Due to their fast convergence and lower itera-
tion requirements, the last one is selected for NMF in this work.

Although there are a variety of nonlinear techniques for fea-
ture reduction, in this work only the linear case is considered
and NMF is selected, due to the simplicity of the proposed fac-
torization and the preservation of a linear relation between the
original space of features and the new one.

For the sake of clarity, Fig. 1 provides the first three vec-
tors of the NMF basis , in the form of 2-D images, derived
from one of the data sets used in this work (SPECT database,
see Section IV below), along with one particular transaxial slice
and the one obtained from the NMF projection. The transaxial
slices provided in Fig. 1 are oriented from posterior (top) to an-
terior (bottom). In the rest of the document the same orienta-
tion criterion is followed. For all the data sets used in this work,
a relative error lower than 5% is guaranteed in all the NMF
transformations.

III. SUPPORT VECTOR MACHINE (SVM) BASED CLASSIFIER

WITH BOUNDS OF CONFIDENCE

A. SVM Background

Support vector machine (SVM) is a widely used technique for
pattern recognition and classification in a variety of applications
for its ability for detecting patterns in experimental databases
[34]–[36]. SVM has become an essential machine-learning
method for the detection and classification of particular patterns
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in medical images. In the literature, it can be found several
fields in which SVM are applied: cancer, tumor, or nodule
detection [37]–[42], vascular analysis [43]–[46], dementia
detection [11], [14], [16], [47], [48], etc. Regarding image
modalities, SVM has been applied to a variety of image types:
magnetic resonance images (MRI) [42], [49], [50], SPECT or
PET [14], [48], ultrasound images [37], [39], [51], etc.

SVM techniques consist of two separate steps: first of all a
given set of binary labeled training data is used for training; then
new unlabeled data can be classified according to the learned
behavior. SVM separates a given set of binary labeled training
data by means of a hyperplane that is maximally distant from
the two possible classes (in our particular case, NOR an AD
classes). The objective is to build a function with the training
data, as expressed in (6), able to properly classify new unclas-
sified data

(6)

The training data are formed by different profiles (set of
images of each subject), each one containing variables, to-
gether with their proper label (NOR or AD). Thus, the training
database can be expressed as

(7)

where are the variables of the profile and the corre-
sponding label.

Linear discriminant functions define decision hyperplanes in
the -dimensional feature space

(8)

where is the weight vector that is orthogonal to the decision
hyperplane and is the threshold. The optimization task con-
sists of finding the unknown parameters , and that define
the decision hyperplane. The hyperplane is not unique and the
selection process focuses on maximizing the generalization per-
formance of the classifier, that is, the ability of the classifier,
designed using the training set, to operate satisfactorily with
new data. The vectors that define the separation hyperplane are
called support vectors (SVs). Among the different design cri-
teria, the maximal margin hyperplane is usually selected since
it leaves the maximum margin of separation between the two
classes [36].

When no linear separation of the training data is possible,
SVM can work in combination with kernel techniques so that
the hyperplane defining the SVM corresponds to a nonlinear
decision boundary [52]. However, in this work, only the linear
case is treated.

B. Bounds of Confidence

As referred, SVM is based in the definition of a decision hy-
perplane in the -dimensional space. The SVs are a subset of
the training dataset, chosen so that the decision hyperplane that
is defined by means of them is the best one in terms of separa-
bility between two classes. The classification of one sample is
directly related to the subspace in which it is located, regarding
the decision hyperplane. The particular distance-like decisions

in SVM make this machine learning approach especially suit-
able for the selection of a security region around the decision
hyperplane in which decisions may not be adopted. This secu-
rity region is defined by means of the selection the bounds of
confidence for the decision.

When the conventional SVM learning approach is performed
and the resulting SVM classifier is trained with a set of training
observations, the separation hyperplane of these data is defined.
Ideally all the training data should be properly classified when
they are re-entered in the SVM for test and classification [36].
However this is not typically the situation as the variables of
the different observations spanned in a particular space of in-
terest (i.e., NMF) may not be separable in this space. What is
more, the hyperplane defined by all the SVs may not be able to
properly define the class of one particular support vector. That
means that although the SVs help to define the best hyperplane
in terms of separability, some of them may not be in the right
subspace defined by the hyperplane. In most of the cases, the
two classes are not completely separable and there is some kind
of overlapping between them in the space of interest. In these
cases, as referred in [36] and [53], although the defined hyper-
plane is the best one in terms of separation, some SVs may be
wrongly located regarding the hyperplane, thus being wrongly
labeled if re-entered in the SVM classifier for testing. As an ex-
ample, Fig. 9, provided in Section V-B, shows clear examples
of the overlapping among classes and SVs located in the wrong
subspace, in three-dimensional NMF subspaces.

In this particular scenario, it is useful to compute the classi-
fication of all the SVs and to derive the error probability for the
proper classification of the SVs of class (SVPs) and SVs of
class (SVNs). If we denote as a support vector of
class wrongly labeled as and on the contrary,
the error probabilities for SVPs and SVNs
can be defined as follows:

(9)

where , , , and denote the
number of vectors of each group. Although other error prob-
abilities may be defined, these ones will be useful for our
purpose. This error probability can be reduced if SVs which
are nearer to the hyperplane (hopefully wrong ones) are not
considered. The consequence of not considering these SVs in
the SVM with bounds of confidence is that all the observations
located between the discarded SV which is furthest to the
hyperplane and the hyperplane itself are not classified because
they are in the security zone. Fig. 2 reveals clearly this fact.
Notice that the hyperplane is still the same which was defined
with all the SVs.

Consider a train data set and the corre-
sponding SVM classifier trained with this data set, with

as the SVs of the positive region and
as the SVs of the negative region ,

and some constraints in terms of maximum accepted value for
and . Then, if the SVs are entered in the clas-

sifier, the and can be computed, ordered from
the closest to the largest distance to the decision hyperplane:

and .
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Fig. 2. Example of ��� � and ��� � distribution in terms of distance to
hyperplane.

Fig. 2 shows an example of and distribution in
terms of distance to the hyperplane. Notice that the classifier
places them in the wrong subspace. According to these wrongly
classified SVs, it can be defined the security region where
decisions are risky and no classification is performed [53]. In
this case, new values of and are obtained. For
instance, imagine that is extracted from the classifier
and no decision is made for observations whose classifier output
is between and the separation plane: in this case, the

is reduced because at least one is
not considered in (9). For new unseen data the classifier will
decrease the error rate, with the drawback of not classifying
some observations whose SVM output is inside the security
region and the decision is considered as too risky. In general,
the new SVM classifier with bounds of confidence can be
defined as follows.

1) Select the desired value of and :
, and , respectively.

2) Take all the SVs and obtain and
.

3) Define for indexing the and for indexing
. Set them initially to 1.

4) Compute the values of and with the desired
ones in step 1.

a) If , extract the
is the security region of the negative

region . Increase and compute again step 4a.
b) If , extract

is the security region of positive re-
gion . Increase and compute again step 4b.

c) The SVM-based classifier is ready, with for
properly classified data and for risky
decisions.
The use of bounds of confidence and the so-called
“security zone” provokes that the new classifier
turns the old binary output of the classifier (which
was ) into in a new four-cases output

, where have
the same meaning than in the old classifier and

are related to observations remaining
in the or side of the hyperplane, respectively,

but too risky to be defined as class or . It is
clear that, as the values of and are
defined when considering the SVs as the evaluation
set, these values are guaranteed a priori when consid-
ering an evaluation set of data different from the one
in the training step. However, although the values of

and are not guaranteed, the existence
of the security zone increases the success rate of the
classifier, at the expense of having some unclassified
outputs.

C. Modified SVM-Based Classifier With Bounds of Confidence

Consider a SVM with the four output values:
, where the central ones make

reference to risky decision and risky decision,
respectively. Although these central outputs are not valid for
decision, they may define a tendency. Consider a new classifier
that combines the output of the SVM classifier for different
NMF projections, that is to say, for different
values, as defined in next equation

(10)

In this case, if is an odd number, the output of the new
classifier function is either positive or negative. Thus, a new
binary decision is set .

(11)

(12)

Other strategies based on the combination of classifiers may
be considered but the one provided above is taken as the refer-
ence in this work.

IV. CAD TOOL EXPERIMENTAL SETUP

A. Functional Brain Image Data Sets

In order to validate the performance and outcomes of the de-
signed NMF-SVM based CAD tool for Alzheimer’s disease de-
tection, two different databases are used. The first one involves
SPECT brain images, whereas the second one consists of PET
brain images. These two databases, described below, contain
spatially normalized functional brain images of different sub-
jects. This normalization step ensures that a given voxel in one
patient refers to the same brain position than the same voxel in
another patient. Then, the intensities of the functional images
are normalized to the maximum intensity [18]. This normal-
ization is computed for each image individually by referring
each voxel to the average value of the %0.1 highest intensity
voxels, in order to allow statistical comparison among different
subjects.

1) SPECT Database: This baseline SPECT data set from
97 participants was collected from the “Virgen de las Nieves”
hospital, Granada, Spain. Each patient was injected with a
gammaemitting technetium-99m labeled ethyl cysteinate dimer
(99mTc-ECD) radiopharmaceutical and the SPECT scan was
acquired by means of a three-head gamma camera Picker Prism
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Fig. 3. SPECT transaxial brain slices, oriented from posterior (top) to anterior
(bottom) in each slice, and from ventral (top left) to dorsal (bottom right) in
the complete set. (a) Man mask for NOR subjects. (b) Example AD patient. (c)
Between-subjects variability between AD and NOR groups.

3000. Brain perfusion images were reconstructed from projec-
tion data by filtered backprojection (FBP) in combination with
a Butterworth noise filter [54]. The SPECT images were labeled
by experts of the “Virgen de las Nieves” hospital using two
different labels: NOR for subjects without any symptom, and
AD for Alzheimer’s patients. The complete SPECT database
consists of 97 patients: 41 NOR and 56 AD. Fig. 3 shows a set
of transaxial brain slices of the SPECT database, for one AD
patient and one NOR subject.

2) PET Database: This PET data set selected for the valida-
tion of the CAD tool was obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database.1 Launched in
2003 by NIA (National Institute on Aging), NIBIB (National
Institute of Biomedical Imaging and Bioengineering), and FDA
(Food and Drug Administration), the ADNI main purpose was
focused on the measurement of the progression of Alzheimer’s
disease (AD) in its initial stages. The ADNI, coordinated by M.
W. Weiner (VA Medical Center and University of California,
San Francisco), is the product of the effort of a variety of re-
searchers from a wide number of academic institutions and pri-
vate corporations. 800 participants from USA and Canada were
recruited: approximately 200 participants without symptoms as
a reference, about 400 MCI subjects, along with their temporal

1http://www.loni.ucla.edu/ADNI

Fig. 4. PET transaxial brain slices, oriented from posterior (top) to anterior
(bottom) in each slice, and from ventral (top left) to dorsal (bottom right) in the
complete set. (a) Mean mask for NOR subjects. (b) Example AD patient. (c)
Between-subjects variability between AD and NOR groups.

evolution over three years and 200 patients with early AD symp-
toms, with their progression in two years.

Among all the data available from ADNI, baseline
Fludeoxyglucose (18F-FDG) PET data from 219 ADNI partic-
ipants was selected. Participants in this database are classified
into three different groups, according to their Mini-Mental
State Exam (MMSE) or Clinical Dementia Rating (CDR):

• 114 mild cognitive impairment subjects (MCI): patients
with memory loss clinically measured, but absence of sig-
nificant levels of impairment in other cognitive domains.

• 53 AD patients (AD): patients meeting the NINCDS/
ADRDA criteria [55] for probable AD.

• 52 normal control subjects (NOR): non-MCI, and nonde-
mented subjects.

Fig. 4 shows a set of transaxial plane brain slices of the PEC
database, for one AD patient and one NOR subject.

In Fig. 3(c) and Fig. 4(c), the regions with high discrepancies
between NOR and AD subjects can be noticed. In AD patients,
characteristic brain regions show decreased glucose metabolism
or blood hypo-perfusion regions, specifically bilaterally regions
in the temporal and parietal lobes, posterior cingulate gyri and
precunei, as well as frontal cortex and whole brain in more se-
verely affected patients. The slices in Figs. 3 and 4 are oriented
from posterior (top) to anterior (bottom) in each one, and from
ventral (top left) to dorsal (bottom right), in each set of slices.
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Fig. 5. Performance of the basic NMF-SVM CAD system with the PET data-
base, for different � values in NMF.

B. CAD Tool Evaluation

In order to evaluate the developed NMF-SVM CAD tool in
all its variations, the success rate (Acc), sensitivity (Sens), and
specificity (Spec) are obtained, these last two defined as in

(13)

where is the number of true positives (AD patients correctly
classified); is the number of true negatives (NOR patients
correctly classified); is the number of false positives (NOR
classified as AD); is the number of false negatives (AD clas-
sified as NOR).

These statistics are estimated by means of a leave-one-out
cross-validation strategy.

1) Patient (from 1 to ) is extracted and the resulting
subject data set is used for feature selection, NMF projec-
tion and for the classifier training.

2) data from Patient are projected in the previously gen-
erated NMF space an then entered into the classifier for
testing.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This section provides the experimental results of the evalu-
ation of the CAD tool developed in this work, along with its
variants. First of all a NMF-SVM based CAD tool is developed,
with linear SVM as classifier, according to Section III-A. The
proposed method is later enhanced with the addition of bounds
of confidence for the classification decision, according to Sec-
tion III-B. Finally a new SVM-based classifier, according to
Section III-C is evaluated. Both databases are applied as in-
coming data for these CAD tools, in order to extract their out-
comes for validation. In the PET database, only NOR and AD
groups (105 subjects) are considered for the validation of the
CAD system, in order to avoid errors due to the MCI patients
and the uncertainty of their actual state as AD or NOR. In the
SPECT database, all the 97 patients are considered.

A. Basic NMF-SVM CAD Tool

Figs. 5 and 6 provide the experimental results of the basic
NMF-SVM system, for a variety of values in the NMF pro-
jection. As it is seen, levels in the range of 80% to 90% are
achieved, for both databases. These resuls are considered as a
reference for the modifications of the CAD tool. The lower per-
formance for the PET data set is justified by the particular nature

Fig. 6. Performance of the basic NMF-SVM CAD system with the SPECT
database, for different � values in NMF.

Fig. 7. (a) Performance of the basic NMF-SVM CAD system with bounds of
confidence in the PET database, for different� values in NMF, (b) number of
subjects without classification in the NMF-SVM CAD system with bounds of
confidence.

Fig. 8. (a) Performance of the basic NMF-SVM CAD system with bounds of
confidence in the SPECT database, for different� values in NMF, (b) number
of subjects without classification in the NMF-SVM CAD system with bounds
of confidence.

of the data set: the images are labeled according to a mental state
evaluation of the subjects and not with the expertise inspection
of the images, as the case of the SPECT data set. This fact makes
the initial PET image labeling available less reliable.

B. Basic NMF-SVM Tool With Bounds of Confidence

The addition of bounds of confidence to the SVM classifier
permits the improvement of the results, at the expense of having
some unlabeled outputs. Although in this case some subjects are
not classified, this approach is similar to real-life cases: some-
times some patients are difficult to be classified with reliability
even by experts. Figs. 7 and 8 show the diagnosis results of the
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Fig. 9. SVM Separation hyperplane, along with the SVs, of the NMF factoriza-
tion for� � �, prior to the definition of the security region, (a) for the SPECT
data, (b) for the PET data. Note the SVs wrongly placed regarding the decision
hyperplane.

basic NMF-SVM tool with bounds of confidence, along with the
number of unlabeled patients due to the existence of a security
region where classification decisions are not allowed.

In Figs. 7 and 8, the presence of a high level of unclassified
subjects is directly related to the value of . The NMF factor-
ization with a lower provides a reduced database in terms
of new features representing the data (matrix ), related to the
NMF basis (matrix ), where a nonnegligible amount of infor-
mation is lost regarding the original data set. In these circum-
stances (e.g., ), the available data for each patient are not
relevant enough to establish a clear difference between classes,
in terms of linear separability between classes. For the sake of
completeness, Fig. 9 provides the SVM separation hyperplane
of the NMF factorization of both data sets, for , prior
to the definition of the bounds of confidence. The linear SVM
classifier with bounds of confidence determines the decision re-
gion according to the available data of the calibration data set,
defining a security region where decisions are risky to be stated.
In the case of low values of in the NMF factorization, many
profiles in the evaluation set are located in the security region
defined by the classifier, not being classified as a consequence.
Due to the existence of some profiles without classification, a
modification of the classifier is proposed (Section III-C).

C. Modified NMF-SVM CAD Tool With Bounds of Confidence

The approach of Section III-C lets obtain higher levels of Acc,
Sens, and Spec without having unclassified subjects, as men-
tioned before. In this case, the new tool combining the output

TABLE I
PERFORMANCE [%] OF BASIC NMF-SVM TOOL AND MODIFIED

NMF-SVM TOOL WITH BOUNDS OF CONFIDENCE

TABLE II
PERFORMANCE [%] OF VAF-SVM AS REFERENCE, BEST BASIC NMF-SVM

TOOL, AND MODIFIED NMF-SVM TOOL WITH BOUNDS OF CONFIDENCE

of the SVM classifier for different NMF projections provides
higher levels of Acc, Sens, and Spec without unclassified sub-
jects. Table I provides the results of this new classifier along
with the ones of Section V-A for comparison.

As it is seen, this CAD tool provides the best results in terms
of tool performance, without unclassified subjects.

D. Discussion and Comparison With Other Methods

Some other approaches are available in the literature. Among
these techniques, the classical voxels-as-features (VAF) [8]
approach for functional images is considered the baseline
reference in terms of comparison between results. The VAF
approach considers that all the available voxels for each set of
subject images provide information and all of them are selected
as input features for the train and test step in the CAD system.
Thus, in this subsection, both databases are analyzed with a
VAF strategy. The classifier selected for this reference case is
a linear SVM. Table II provides the results of the VAF-SVM
method, for both databases. In addition, the reference results
of other techniques are provided, for comparison. Table III
provide results obtained with PET and SPECT databases, for
a variety of techniques: kernel techniques [24], linear discrim-
inant analysis (LDA) [14], [24], principal component analysis
(PCA) [48], [56], independent component analysis [48], [56],
etc., for feature selection and reduction, and neural networks
(NN) [14], SVM [48], [24], etc., for classification.

In this work, both techniques, NMF and SVM, are combined
and applied as constituting parts of a robust CAD system for the
early detection of Alzheimer’s patterns. Although these tech-
niques are already well known and widely applied, the proper
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TABLE III
RESULTS [%] IN THE LITERATURE WITH OTHER METHODS, FOR COMPARISON

combination is an issue of interest in this work and is consid-
ered one of the main contributions in this document. In the case
of SVM, another important contribution is also stated regarding
the use of bounds of confidence and the definition of the secu-
rity region: it is provided an algorithm for the computation of
the SVM classifier with bounds of confidence and the definition
of the security region considering the support vectors. In addi-
tion, also a new classifier (Section III-C) is proposed, based on
the combination of different SVMs with bounds of confidence,
considering different NMF dimensions in each one. Other
contributions are related to the proper results obtained with the
application of this CAD tool for the proper identification of the
Alzheimer’s disease, compared with other strategies.

VI. CONCLUSION

This paper presents a NMF-SVM based technique for com-
puted aided diagnosis of Alzheimer’s disease. The proposed
technique is based on the combination of nonnegative matrix
factorization (NMF) for feature selection and reduction and
SVM with bounds of confidence for classification. The feature
reduction step provides a reduced set of variables representing
the original data. This feature reduction is especially suitable
for machine learning techniques such as SVM. Three different
approaches for the classifier are provided and detailed, two of
them including bounds of confidence and taking advantage of
the definition of a “security region” in the SVM hyperplane,
where no decision is assumed. The NMF-SVM CAD tool,
along with its variations, is validated with two brain functional
image databases: a SPECT data set which provides information
about the blood perfusion in the brain and a PET data set
which yields information about the glucose metabolism. The
validation results of the proposed NMF-SVM method yields
up to 91% classification accuracy with high sensitivity and
specificity values (upper than 85%) for both data sets.
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